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Abstract—Odometry is an essential functionality in 

autonomous agents, such as cars, robots, and unmanned aerial 

vehicles, allowing them to accurately estimate their poses. This 

paper introduces an odometry technique based on epipolar 

geometry (EP) within a monocular camera system. The focus is 

on the implementation of Monocular Visual Odometry (MVO), 

which includes camera calibration, feature detection and 

matching, and the application of Singular Value Decomposition 

(SVD) for calculating translational and rotational 

transformations, as well as pose estimation. The MVO 

algorithm is evaluated using samples from the KITTI dataset 

and validated against ground truth poses. 

 

Keywords—Computer Vision, Epipolar Geometry, 

Monocular Visual Odometry, Singular Value Decomposition.  

 

I.   INTRODUCTION 

Visual odometry (VO) is a process of estimating the ego 

motion of an agent (e.g., vehicle, human, and robot) using 

the visual data gained from a single or multiple camera 

systems attached to the agent [5]. The term VO was first 

used in a paper by Nistér in 2004 [4]. The VO system 

operates by incrementally estimating the pose of the agent 

over time through observation of the changes that the 

motion induces to the image frame captured by the camera.  

VO has been practically used in many computer vision 

and robotics applications and has several advantages 

compared to other navigation systems such as Global 

Positioning System (GPS), Light Detection and Ranging 

(Lidar), Inertial Measurement Unit (IMU), and wheel 

odometry. While GPS excels in outdoor and long-range 

navigation, it lacks accuracy and reliability in urban areas 

and GPS-denied environments. Lidar offers high resolution 

data but is cost inefficient and has a limited range. IMU 

provides information about angular velocity and 

acceleration of the agent, but it struggles with the 

accumulation of errors over time. Wheel odometry, while 

it is also commonly used, suffers from wheels slip error in 

uneven terrain or other unfavorable conditions [5]. VO is 

an interesting supplementary for these navigation systems 

as it is unaffected by wheel slip and can offer better 

accuracy in urban or GPS-denied areas, such as 

underwater, aerial, or indoors, as long as provided with 

sufficient illumination. A demonstration has shown that 

VO results in more accurate trajectory estimates compared 

to  wheel odometry, with errors ranging from 0.1 to 

2 percent [5]. A camera sensor is also relatively cost 

effective and can provide color, semantic, and geometric 

information for a more comprehensive understanding of 

the scene.  

In this work, an MVO technique based on epipolar 

geometry is presented. The approach involves camera 

calibration, feature detection and matching, and the use of 

SVD to compute rotational and translational 

transformations. The method is evaluated using samples of 

a publicly available dataset fetched from The KITTI Vision 

Benchmark Suite. The remainder of this paper is structured 

as follows: Section II elaborates theoretical foundations 

used in this work. Section III outlines the methodology, 

detailing each step of the MVO algorithm and acquirement 

of data. Section IV presents the results and discusses the 

performance of the proposed approach. Finally, Section V 

concludes the paper and highlights potential directions for 

future research, followed by acknowledgements in Section 

VI. 

 

II.  THEORETICAL FOUNDATIONS 

A. Singular Value Decomposition 

SVD is a technique to factorize a matrix into 3 distinct 

components. The SVD of a given matrix 𝐴 is shown as 

follows: 

 

𝐴 = 𝑈Σ𝑉𝑇         (1) 

 

where 𝑈 and 𝑉 are orthonormal matrices and Σ is a 

diagonal matrix with the non-zero diagonal entries as the 

singular values of 𝐴 denoted as 𝜎. If 𝐴 has a size 𝑚 × 𝑛, 

then 𝑈, Σ, and 𝑉 have sizes 𝑚 × 𝑚, 𝑚 × 𝑛, and 𝑛 × 𝑛 

respectively. Suppose 𝑢𝑖 and 𝑣𝑖 is a column of 𝑈 and 𝑉 

respectively in the form vectors. Given k the rank of 𝐴, then 

𝑢1, 𝑢2, … , 𝑢𝑘 are the left singular vectors of 𝐴, 𝑣1, 𝑣2, … , 𝑣𝑘 

are the right singular vectors of 𝐴, and 𝜎1, 𝜎2, … , 𝜎𝑘 are the 

singular values of 𝐴.  

  

𝐴𝑇𝐴 = 𝑉Λ𝑉𝑇           (2) 

 

Equation (2) is a result of multiplying (1) on the left by 𝐴𝑇 

and from it can be inferred that 𝑉 diagonalizes 𝐴𝑇𝐴. The 

non-zero diagonal entries of Λ, denoted as 𝜆𝑖, are the 
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eigenvalues of 𝐴𝑇𝐴 which are positive and each of the 

corresponding 𝜎𝑖 is equivalent to √𝜆𝑖. 

 

𝐴 = 𝑈Σ𝑉𝑇 = 𝑢1𝜎1𝑣1
𝑇 + ⋯ + 𝑢𝑘𝜎𝑘𝑣𝑘

𝑇   (3) 

 

The SVD of 𝐴 can also be rewritten as a sum of the product 

of 𝑢𝑖, 𝜎𝑖, and 𝑣𝑖
𝑇 up to 𝑘 as shown in (3). 

 

B. Epipolar Geometry 

Epipolar geometry describes the geometric relationship 

between two views, focusing on the intersection of their 

image planes with a pencil of planes sharing the baseline 

(the line connecting the camera centers) as an axis. This 

geometry is central to stereo matching, which involves 

finding corresponding points between two images. If a 3D 

point 𝑋 is projected onto the images as 𝑥 in the first view 

and 𝑥′ in the second, these points, along with 𝑋 and the 

camera centers, lie on a common plane 𝜋. The back-

projected rays from 𝑥 and 𝑥′ meet at 𝑋 and are coplanar 

within 𝜋, a key property for correspondence search.  

 

 
       (a)                   (b) 

Fig. 1. Point correspondence geometry 

Source: www.robots.ox.ac.uk 

 

 
          (a)                 (b) 

Fig. 2. Epipolar geometry 

Source: www.robots.ox.ac.uk 

 

Several terminologies used in epipolar geometry are the 

epipole, epipolar plane, and epipolar line. The epipole is 

the point where the baseline (the line connecting the 

camera centers) intersects the image plane. An epipolar 

plane is a plane containing the baseline and there exists a 

one-parameter family (a pencil) of epipolar planes. An 

epipolar line is the intersection of the image plane with the 

epipolar plane [2].  

 

C. Linear Camera Model and Calibration 

In a perspective or linear camera model, an upper right 

triangular matrix 𝐾 is defined as the intrinsic camera 

matrix containing intrinsic parameters 𝛼𝑢 and 𝛼𝑣 as focal 

lengths and 𝑢0, 𝑣0 the image coordinates of the projection 

center. Let 𝑋 = [𝑧 𝑦 𝑧]𝑇 represent a 3D point in the 

camera’s reference frame, and 𝑝 = [𝑢 𝑣]𝑇 denote its 2D 

projection on the image plane in pixel coordinates. The 

mapping from 3D-world to 2D image of the point is 

expressed with the perspective projection equation (4) 

where 𝜆 is the depth factor.  

 

𝜆 [
𝑢
𝑣
1

] = 𝐾𝑋 = [
𝛼𝑢 0 𝑢0

0 𝛼𝑣 𝑣0

0 0 1

] [
𝑥
𝑦
𝑧

]  (4) 

 

The intrinsic camera matrix must be known for an MVO 

system to operate. It can be obtained using camera 

calibration modules in existing computer vision libraries 

such as OpenCV. One commonly used method for camera 

calibration involves a planar checkerboard-like pattern. 

Several pictures of the board are taken at different positions 

and angles. The positions of the squares on the board are 

known or can be either obtained manually or using 

available detector tools. The intrinsic and extrinsic 

parameters of the camera are then calculated using a least-

square minimization method.  

 

C. Feature Detection and Matching 

Feature detection is a process of identifying and marking 

points of interest in an image which are well-localized and 

characterized with distinct texture [1]. In this work, the 

ORB (Oriented FAST and Rotated BRIEF) feature detector 

is used to detect and describe local features of an image.  

The ORB detector algorithm is a combination of FAST 

(Features from Accelerated Segment Test) corner detector 

and the BRIEF (Binary Robust Independent Elementary 

Features) descriptor. The FAST algorithm identifies 

corner-like structures rapidly and the BRIEF algorithm 

generates compact binary descriptors for the detected 

points. Additionally, ORB provides orientation 

information of the detected features, ensuring rotational 

invariance and enhancing robustness of feature matching 

process. 

Feature matching is a process of pairing feature 

descriptors of one image with their corresponding 

descriptors in another image. The FLANN (Fast Library 

for Approximate Nearest Neighbors) based matcher from 

OpenCV is used to efficiently approximate matches of 

given descriptors from two sequential image frames. This 

method computes the hamming distance to match the 

descriptors. The k Nearest Neighbors (KNN) algorithm is 

then performed to find the k closest matches for a given 

descriptor.  

 

D. Pose Estimation and Concatenation 

Two images 𝐼𝑘 and 𝐼𝑘−1 at frame 𝑘 taken from a 

calibrated camera have geometric relations described by 

the essential matrix 𝐸 which contains the camera motion 

parameters up to an unknown scale factor for the 

translation component shown in (5).  

 

𝐸𝑘 ≃ 𝑡̂𝑘𝑅𝑘          (5) 

 

The symbol ≃ indicates that the equivalence is valid up to 

a multiplicative scalar with 𝑅𝑘 ∈ ℝ3×3 as the rotation 

matrix with, 𝑡𝑘 = [𝑡𝑥 𝑡𝑦 𝑡𝑧]𝑇 as the translation 

vector,  and 𝑡̂𝑘 a skew-symmetric matrix containing 

components of 𝑡𝑘 described in (6). 
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𝑡̂𝑘 = [

0 −𝑡𝑧 𝑡𝑦

𝑡𝑧 0 −𝑡𝑥

−𝑡𝑦 𝑡𝑥 0
]             (6) 

 

The essential matrix is computed from 2-D-to-2-D 

feature correspondence obtained from the feature matching 

process. The epipolar constraint is applied in the 

computation of 𝐸, which is formulated by 𝑝𝑇𝐸𝑝 = 0, 

where 𝑝 = [𝑢̃ 𝑣̃ 1]𝑇 is a feature location in an image of 

the previous frame (𝐼𝑘−1) and 𝑝′ is the location of its 

corresponding feature in the image of the following frame 

(𝐼𝑘), both are normalized image coordinates. An efficient 

solution to 𝐸 is presented in [3]. 

The rotation and translation vector matrix can be 

extracted from 𝐸 using SVD. Let 

 

𝐷 = [
0 1 0

−1 0 0
0 0 1

]  (7) 

 

and the SVD of 𝐸:  

 

𝐸 = 𝑈Σ𝑉𝑇,           (8) 

 

where 𝑈 and 𝑉 are chosen such that det(𝑈) > 0 and 

det(𝑉) > 0. Then, the translation vector 𝑡 ~ 𝑡𝑢 ≡
[𝑢13 𝑢23 𝑢33]𝑇 and the rotation matrix 𝑅 is equal to 

𝑅𝑎 ≡ 𝑈𝐷𝑉𝑇 or 𝑅𝑏 ≡ 𝑈𝐷𝑇𝑉𝑇, all satisfying the epipolar 

constraint. Assuming the initial pose of the camera defined 

as the camera matrix 𝑃 = [𝐼|0] of size 3 × 4 with 𝑡 in unit 

length, there are four possible solutions for the second 

camera matrix: 𝑃𝐴 ≡ [𝑅𝑎|𝑡𝑢], 𝑃𝐵 ≡ [𝑅𝑎|−𝑡𝑢], 𝑃𝐶 ≡
[𝑅𝑏|𝑡𝑢], and 𝑃𝐷 ≡ [𝑅𝑏|−𝑡𝑢], one which corresponds to the 

true configuration. The efficient solution to the true 

configuration 𝑅 and 𝑡 is presented in [3]. The extracted 𝑅 

and 𝑡 are then used to determine the transformation matrix 

of the camera from frame 𝑘 − 1 to 𝑘 as shown in (9). 

 

𝑇𝑘,𝑘−1 = [
𝑅𝑘,𝑘−1 𝑡𝑘,𝑘−1

0 1
]      (9) 

 

 
Fig. 3. An illustration of the epipolar constraint and the camera 

transformation 

Source: ieeexplore.ieee.org/document/6096039 

 

The obtained transformation matrix can now be used to 

determine the global pose of the camera if given the initial 

camera matrix that corresponds with the world coordinates 

of the camera. All subsequent motions can be defined as 

the set 𝑇1:𝑛 = {𝑇1,0, … , 𝑇𝑛,𝑛−1} and the transformations of 

the camera with respect to the arbitrary initial pose at frame 

𝑘 = 0 can be defined as 𝐶0:𝑛 = {𝐶0, … , 𝐶𝑛 }. The current 

pose of the camera  𝐶𝑛 can be calculated by concatenating 

all the previous transformations using the formula shown 

in (10). 

𝐶𝑛 = 𝐶𝑛−1𝑇𝑛,𝑛−1  (10)  

 

In a world frame of reference with an inverted axis, the 

transformation needs to be inverted in advance for the 

poses to be calculated with the correct alignment with 

respect to the world coordinate. 

 

III.   METHODOLOGY 

A. Dataset 

The data used in this work are sampled from the KITTI 

Vision Benchmark Suite. The KITTI dataset provides real-

world computer vision benchmarks using the Annieway 

autonomous driving platform. These benchmarks cover 

tasks such as stereo, optical flow, visual odometry, 3D 

object detection, and 3D tracking. Data is collected with a 

station wagon equipped with high-resolution cameras, a 

Velodyne laser scanner, and a GPS system, capturing 

urban, rural, and highway scenarios in Karlsruhe. The 

dataset includes up to 15 cars and 30 pedestrians per image 

and offers raw data along with task-specific benchmarks, 

evaluation metrics, and an evaluation website [9].  

 

 
Fig. 4. A sample from the KITTI odometry dataset 

Source: www.cvlibs.net/datasets/kitti 

 

Specifically, this work uses the odometry benchmark 

provided by KITTI. This benchmark consists of 22 stereo 

sequences saved in loss less PNG format. The first 11 

sequences are provided with ground truth trajectories and 

the remainder without the ground truth trajectories. 

Sequence 00 and 01 of the datasets, sampled up to 500 

frames, are used in this work. 

 

B. Initialization 

  
Fig. 5. Calibration parameters initialization 

 

The MVO module is built as a class with the intrinsic 

camera matrix as its attribute that can be set upon 

instantiation. The calibration parameters, provided as a text 

file, are parsed to extract the intrinsic camera parameters 
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and the initial pose. The intrinsic camera parameters 

throughout the experiment are constant. 

 

C. Motion Estimation 

 
Fig. 6. Feature detection and matching function 

 

The feature detection and matching processes are 

defined as a single function that accepts the previous and 

current image frames as input. Utilizing the OpenCV 

library, the features from both images are detected using 

the ORB detector and matched using the FLANN based 

KNN matcher with 𝑘 neighbors set as 2. To deal with 

ambiguities, the matched features are then filtered by 

comparing the first score and the second score. A match is 

selected if the first score is less than the second score up to 

a threshold, which is chosen arbitrarily to be 0.8. The 

function then returns the keypoints of the corresponding 

matched descriptors. A distance threshold in pixel units is 

applied to filter out feature matches that are too far away 

from each other in terms of image coordinates. This is done 

to reduce false matches because of feature descriptor biases 

with the assumption that matching features should ideally 

have a relatively close distance in the image plane. 
 

 
Fig. 7. Feature detection and matching visualization 

 

Having the intrinsic camera matrix and the locations of 

features from two sequential images known, the essential 

matrix can be calculated. The computation of the essential 

matrix is refined using the Random Sample Consensus 

(RANSAC) algorithm. It is then decomposed by applying 

SVD and the resulting components are used to extract the 

rotation and translation matrices. The rotation and 

translation matrices are then formed into the 

transformation matrix as a 4 × 4 NumPy array. 

 

 
Fig. 8. Essential matrix decomposition function 

 

 

 
Fig. 9. Transformation matrix calculation function 

 

Errors might occur in the process of calculating the 

transformation matrix. Some are the result of the feature 

detector not detecting enough features for the essential 

matrix computation to work, resulting in the essential 

matrix not having the appropriate size and values. To 

handle this issue, image frames causing the error are 

skipped with the previous frame containing sufficient 

successfully detected features being held. The features 

from the previous image frame are then matched with the 

next image frame containing sufficient successfully 

detected features. The list of computed transformation 

matrices is then saved as a .npy file. 

 

 
Fig. 10. Motion sequence estimation code 
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D. Performance Evaluation 

 
Fig. 11. Pose concatenation and evaluation code 

 

The evaluation of the MVO algorithm involves 

calculating the sequence of poses with respect to the initial 

calibrated pose by applying the transformation 

concatenation formula (10). It needs to be noted that the 

subsequent pose is a product of the pose from the previous 

frame with the inverse of the corresponding transformation 

to ensure that the resulting poses are properly aligned with 

the world frame of reference axes. The pose components 

that are parallel to the image baseline and perpendicular to 

the image plane are extracted to be visualized. Each pose 

is evaluated by calculating the euclidean distance with 

respect to the corresponding ground truth pose as the error.  

 

𝑒𝑟𝑟𝑜𝑟 = ‖𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑜𝑠𝑒 − 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑝𝑜𝑠𝑒‖  (11) 

 

The whole performance of the algorithm is also evaluated 

using the mean squared error (MSE) with 𝑛 as the number 

of poses. 

 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑒𝑟𝑟𝑜𝑟𝑖)

2𝑛
𝑖=1   (12) 

 

IV.   RESULTS 

Table 1. Calibrated intrinsic camera parameters 

Intrinsic Camera Parameter Value 

𝜶𝒖 718.856 

𝜶𝒗 718.856 

𝒖𝟎 607.1928 

𝒗𝟎 185.2157 

 

Table 2. Monocular visual odometry evaluation benchmark 

 

Estimated 

trajectory 

KITTI 

sequence 
Frames 

Trajectory 

estimation time 

(s) 

Feature 

distance 

threshold 

(pixel) 

Error frames 

count 
MSE 

a 00 500 63.6727 80 0 3761.1470 

b 00 500 89.1119 100 0 9435.3809 

c 01 500 51.0520 80 0 130770.3815 

d 01 500 82.4384 100 0 145502.4608 

 
    (a)                 (b) 

  
     (c)                  (d) 

 

Fig. 12. Trajectory estimation results of monocular visual odometry on KITTI image sequence
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The performance of the monocular visual odometry 

system was evaluated using the KITTI dataset on multiple 

sequences and summarized in Table 2. Key metrics include 

trajectory estimation time, feature distance threshold, error 

count, and (MSE). The corresponding trajectory estimation 

results and error analysis are visualized in Fig. 12 for four 

trajectories (a, b, c, d). 

The trajectory estimation performance analysis is as 

follows: 

• Trajectory (a) achieved an MSE of 3761.1470 with a 

feature distance threshold of 80 pixels. The system 

required 63.6727 seconds to estimate 500 frames, with 

no error frames counts reported. 

• Trajectory (b), using a higher feature distance 

threshold of 100 pixels, resulted in a higher MSE of 

9435.3809 and a longer trajectory estimation time of 

89.1119 seconds, with no error frames recorded. 

• Trajectory (c) demonstrated the worst performance in 

terms of MSE (130770.3815), despite utilizing the 

same feature distance threshold as trajectory (a). The 

estimation time for this sequence was shorter (51.0520 

seconds) for the same number of frames. 

• Trajectory (d), with a feature distance threshold of 100 

pixels, achieved a higher MSE (145502.4608) 

compared to trajectory (c), with an estimation time of 

82.4384 seconds. 

 

Estimated trajectories (a) and (b), despite sharing the 

same ground truth poses, produced different results. With 

a lower feature distance threshold compared to (b), 

trajectory (a) demonstrated greater consistency and better 

overall performance. In contrast, trajectory (b) exhibited 

significant drifts after approximately 50 frames. This 

behavior is attributed to the feature matcher in (b), which 

covered a broader search area for feature pairs, increasing 

the likelihood of false matches and leading to inaccuracies 

in the calculated transformations. This effect is also 

showcased in the comparison of trajectories (c) and (d) 

Despite its better performance, trajectory (a) also 

suffered from drifts after the first turn, causing cumulative 

errors over time. Additionally, low texture richness in the 

images could further degrade performance by limiting the 

feature detector's ability to identify distinct features. This 

challenge is particularly evident in urban areas, where 

roads and building facades often lack sufficient distinctive 

points for detection. Nevertheless, despite these 

limitations, the MVO algorithm demonstrated capability in 

identifying turns within the trajectory. 

Sequence 01 presents a distinct scenario compared to the 

estimations in Sequence 00. Rather than featuring sharp 

turns, it primarily showcases a straight trajectory. At first 

glance, the MVO algorithm appears to perform reasonably 

well in estimating the agent's direction of motion, with 

minimal offsets especially observed in trajectory (c). 

However, the algorithm significantly underperforms in 

accurately capturing the agent's translational movement, 

leading to notable discrepancies in positional estimates.  

Sequence 01 portrays the agent as a car traveling at high 

speed along a highway. The substantial motion between 

consecutive frames presents a significant challenge for the 

algorithm in detecting matching features that accurately 

follow the agent's true trajectory. This challenge, referred 

to as motion ambiguity [1], can greatly affect the accuracy 

of trajectory estimation, particularly for agents operating 

across a wide range of speeds. 

Other unexamined external factors might contribute to 

drift errors. The KITTI dataset includes scenarios with 

moving objects such as cars that might disrupt the feature 

matching process by introducing inconsistent motions 

relative to the overall scene.  

 

V.   CONCLUSION 

The evaluation of the MVO system using the KITTI 

dataset revealed strengths and limitations across different 

sequences and trajectories. The system demonstrated 

reasonable performance in estimating motion direction, 

particularly on straight trajectories like sequence 01. 

However, significant challenges were noted in accurately 

capturing translational movements, with issues like motion 

ambiguity and drift errors impacting overall trajectory 

estimation with cumulative errors. 

Key findings include the influence of feature distance 

thresholds on performance, as trajectories with lower 

thresholds (e.g., trajectory (a)) consistently outperformed 

those with higher thresholds (e.g., trajectory (b)), 

highlighting the trade-off between computational 

efficiency and matching accuracy. Despite these 

improvements, cumulative errors were observed in more 

complex scenarios, especially after turns or over extended 

sequences. 

External factors such as low texture richness and 

dynamic elements (e.g., moving cars, pedestrians) further 

degraded performance by complicating the feature 

matching process. Urban settings, in particular, posed 

unique challenges due to limited distinctive features in the 

environment. 

Despite these limitations, the MVO algorithm exhibited 

competency in identifying turns and maintaining 

reasonable performance on specific trajectories. Future 

work should focus on mitigating the impact of motion 

ambiguity, improving feature matching robustness in 

dynamic scenes, and addressing texture limitations to 

enhance the system's reliability in diverse and challenging 

scenarios. Alternative methods in matrix processing such 

as SVD for sparse matrix can also be explored to open 

other possibilities of improvement in performance. 
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